ppcrcd/trunk/yaboot/gunzip.c

sparky cvs at pld-linux.org
Thu Jan 5 23:14:51 CET 2006


Author: sparky
Date: Thu Jan  5 23:14:47 2006
New Revision: 6746

Modified:
   ppcrcd/trunk/yaboot/gunzip.c
Log:
- spaces -> tabs


Modified: ppcrcd/trunk/yaboot/gunzip.c
==============================================================================
--- ppcrcd/trunk/yaboot/gunzip.c	(original)
+++ ppcrcd/trunk/yaboot/gunzip.c	Thu Jan  5 23:14:47 2006
@@ -1,4 +1,4 @@
-/* 
+/*
  *  yaboot for ppcrcd
  *  PLD Linux Distribution
  *
@@ -32,101 +32,101 @@
  */
 
 /* inflate.c -- Not copyrighted 1992 by Mark Adler
-   version c10p1, 10 January 1993 */
+ version c10p1, 10 January 1993 */
 
 /* You can do whatever you like with this source file, though I would
-   prefer that if you modify it and redistribute it that you include
-   comments to that effect with your name and the date.  Thank you.
+  prefer that if you modify it and redistribute it that you include
+  comments to that effect with your name and the date.  Thank you.
  */
 
 /*
-   Inflate deflated (PKZIP's method 8 compressed) data.  The compression
-   method searches for as much of the current string of bytes (up to a
-   length of 258) in the previous 32K bytes.  If it doesn't find any
-   matches (of at least length 3), it codes the next byte.  Otherwise, it
-   codes the length of the matched string and its distance backwards from
-   the current position.  There is a single Huffman code that codes both
-   single bytes (called "literals") and match lengths.  A second Huffman
-   code codes the distance information, which follows a length code.  Each
-   length or distance code actually represents a base value and a number
-   of "extra" (sometimes zero) bits to get to add to the base value.  At
-   the end of each deflated block is a special end-of-block (EOB) literal/
-   length code.  The decoding process is basically: get a literal/length
-   code; if EOB then done; if a literal, emit the decoded byte; if a
-   length then get the distance and emit the referred-to bytes from the
-   sliding window of previously emitted data.
-
-   There are (currently) three kinds of inflate blocks: stored, fixed, and
-   dynamic.  The compressor deals with some chunk of data at a time, and
-   decides which method to use on a chunk-by-chunk basis.  A chunk might
-   typically be 32K or 64K.  If the chunk is uncompressible, then the
-   "stored" method is used.  In this case, the bytes are simply stored as
-   is, eight bits per byte, with none of the above coding.  The bytes are
-   preceded by a count, since there is no longer an EOB code.
-
-   If the data is compressible, then either the fixed or dynamic methods
-   are used.  In the dynamic method, the compressed data is preceded by
-   an encoding of the literal/length and distance Huffman codes that are
-   to be used to decode this block.  The representation is itself Huffman
-   coded, and so is preceded by a description of that code.  These code
-   descriptions take up a little space, and so for small blocks, there is
-   a predefined set of codes, called the fixed codes.  The fixed method is
-   used if the block codes up smaller that way (usually for quite small
-   chunks), otherwise the dynamic method is used.  In the latter case, the
-   codes are customized to the probabilities in the current block, and so
-   can code it much better than the pre-determined fixed codes.
-
-   The Huffman codes themselves are decoded using a mutli-level table
-   lookup, in order to maximize the speed of decoding plus the speed of
-   building the decoding tables.  See the comments below that precede the
-   lbits and dbits tuning parameters.
- */
+	Inflate deflated (PKZIP's method 8 compressed) data.  The compression
+	method searches for as much of the current string of bytes (up to a
+	length of 258) in the previous 32K bytes.  If it doesn't find any
+	matches (of at least length 3), it codes the next byte.  Otherwise, it
+	codes the length of the matched string and its distance backwards from
+	the current position.  There is a single Huffman code that codes both
+	single bytes (called "literals") and match lengths.  A second Huffman
+	code codes the distance information, which follows a length code.  Each
+	length or distance code actually represents a base value and a number
+	of "extra" (sometimes zero) bits to get to add to the base value.  At
+	the end of each deflated block is a special end-of-block (EOB) literal/
+	length code.  The decoding process is basically: get a literal/length
+	code; if EOB then done; if a literal, emit the decoded byte; if a
+	length then get the distance and emit the referred-to bytes from the
+	sliding window of previously emitted data.
+	
+	There are (currently) three kinds of inflate blocks: stored, fixed, and
+	dynamic.  The compressor deals with some chunk of data at a time, and
+	decides which method to use on a chunk-by-chunk basis.  A chunk might
+	typically be 32K or 64K.  If the chunk is uncompressible, then the
+	"stored" method is used.  In this case, the bytes are simply stored as
+	is, eight bits per byte, with none of the above coding.  The bytes are
+	preceded by a count, since there is no longer an EOB code.
+	
+	If the data is compressible, then either the fixed or dynamic methods
+	are used.  In the dynamic method, the compressed data is preceded by
+	an encoding of the literal/length and distance Huffman codes that are
+	to be used to decode this block.  The representation is itself Huffman
+	coded, and so is preceded by a description of that code.  These code
+	descriptions take up a little space, and so for small blocks, there is
+	a predefined set of codes, called the fixed codes.  The fixed method is
+	used if the block codes up smaller that way (usually for quite small
+	chunks), otherwise the dynamic method is used.  In the latter case, the
+	codes are customized to the probabilities in the current block, and so
+	can code it much better than the pre-determined fixed codes.
+	
+	The Huffman codes themselves are decoded using a mutli-level table
+	lookup, in order to maximize the speed of decoding plus the speed of
+	building the decoding tables.  See the comments below that precede the
+	lbits and dbits tuning parameters.
+*/
 
 
 /*
-   Notes beyond the 1.93a appnote.txt:
-
-   1. Distance pointers never point before the beginning of the output
-      stream.
-   2. Distance pointers can point back across blocks, up to 32k away.
-   3. There is an implied maximum of 7 bits for the bit length table and
-      15 bits for the actual data.
-   4. If only one code exists, then it is encoded using one bit.  (Zero
-      would be more efficient, but perhaps a little confusing.)  If two
-      codes exist, they are coded using one bit each (0 and 1).
-   5. There is no way of sending zero distance codes--a dummy must be
-      sent if there are none.  (History: a pre 2.0 version of PKZIP would
-      store blocks with no distance codes, but this was discovered to be
-      too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
-      zero distance codes, which is sent as one code of zero bits in
-      length.
-   6. There are up to 286 literal/length codes.  Code 256 represents the
-      end-of-block.  Note however that the static length tree defines
-      288 codes just to fill out the Huffman codes.  Codes 286 and 287
-      cannot be used though, since there is no length base or extra bits
-      defined for them.  Similarly, there are up to 30 distance codes.
-      However, static trees define 32 codes (all 5 bits) to fill out the
-      Huffman codes, but the last two had better not show up in the data.
-   7. Unzip can check dynamic Huffman blocks for complete code sets.
-      The exception is that a single code would not be complete (see #4).
-   8. The five bits following the block type is really the number of
-      literal codes sent minus 257.
-   9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
-      (1+6+6).  Therefore, to output three times the length, you output
-      three codes (1+1+1), whereas to output four times the same length,
-      you only need two codes (1+3).  Hmm.
-  10. In the tree reconstruction algorithm, Code = Code + Increment
-      only if BitLength(i) is not zero.  (Pretty obvious.)
-  11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
-  12. Note: length code 284 can represent 227-258, but length code 285
-      really is 258.  The last length deserves its own, short code
-      since it gets used a lot in very redundant files.  The length
-      258 is special since 258 - 3 (the min match length) is 255.
-  13. The literal/length and distance code bit lengths are read as a
-      single stream of lengths.  It is possible (and advantageous) for
-      a repeat code (16, 17, or 18) to go across the boundary between
-      the two sets of lengths.
- */
+	Notes beyond the 1.93a appnote.txt:
+	
+	1. Distance pointers never point before the beginning of the output
+	stream.
+	2. Distance pointers can point back across blocks, up to 32k away.
+	3. There is an implied maximum of 7 bits for the bit length table and
+	15 bits for the actual data.
+	4. If only one code exists, then it is encoded using one bit.  (Zero
+	would be more efficient, but perhaps a little confusing.)  If two
+	codes exist, they are coded using one bit each (0 and 1).
+	5. There is no way of sending zero distance codes--a dummy must be
+	sent if there are none.  (History: a pre 2.0 version of PKZIP would
+	store blocks with no distance codes, but this was discovered to be
+	too harsh a criterion.)  Valid only for 1.93a.  2.04c does allow
+	zero distance codes, which is sent as one code of zero bits in
+	length.
+	6. There are up to 286 literal/length codes.  Code 256 represents the
+	end-of-block.  Note however that the static length tree defines
+	288 codes just to fill out the Huffman codes.  Codes 286 and 287
+	cannot be used though, since there is no length base or extra bits
+	defined for them.  Similarly, there are up to 30 distance codes.
+	However, static trees define 32 codes (all 5 bits) to fill out the
+	Huffman codes, but the last two had better not show up in the data.
+	7. Unzip can check dynamic Huffman blocks for complete code sets.
+	The exception is that a single code would not be complete (see #4).
+	8. The five bits following the block type is really the number of
+	literal codes sent minus 257.
+	9. Length codes 8,16,16 are interpreted as 13 length codes of 8 bits
+	(1+6+6).  Therefore, to output three times the length, you output
+	three codes (1+1+1), whereas to output four times the same length,
+	you only need two codes (1+3).  Hmm.
+	10. In the tree reconstruction algorithm, Code = Code + Increment
+	only if BitLength(i) is not zero.  (Pretty obvious.)
+	11. Correction: 4 Bits: # of Bit Length codes - 4     (4 - 19)
+	12. Note: length code 284 can represent 227-258, but length code 285
+	really is 258.  The last length deserves its own, short code
+	since it gets used a lot in very redundant files.  The length
+	258 is special since 258 - 3 (the min match length) is 255.
+	13. The literal/length and distance code bit lengths are read as a
+	single stream of lengths.  It is possible (and advantageous) for
+	a repeat code (16, 17, or 18) to go across the boundary between
+	the two sets of lengths.
+*/
 
 #include "stdlib.h"
 #include "string.h"
@@ -159,13 +159,15 @@
 static char *gzmalloc_start = 0;
 static char *gzmalloc_top = 0;
 
-void gzmalloc_init(void *bottom, unsigned long size)
+void
+gzmalloc_init(void *bottom, unsigned long size)
 {
-    gzmalloc_start = gzmalloc_ptr = bottom;
-    gzmalloc_top = bottom + size;
+	gzmalloc_start = gzmalloc_ptr = bottom;
+	gzmalloc_top = bottom + size;
 }
 
-void *gzmalloc (unsigned int size)
+void *
+gzmalloc (unsigned int size)
 {
 	char *caddr;
 
@@ -182,7 +184,8 @@
 	return caddr;
 }
 
-void reset_gzmalloc(void) {
+void
+reset_gzmalloc(void) {
 	gzmalloc_ptr = gzmalloc_start;
 }
 
@@ -191,56 +194,56 @@
 static int
 bad_field (int len)
 {
-  char ch = 1;
-  int not_retval = 1;
+	char ch = 1;
+	int not_retval = 1;
 
-  do
-    {
-      if (len >= 0)
+	do
 	{
-	  if (!(len--))
-	    break;
-	}
-      else
-	{
-	  if (!ch)
-	    break;
+		if (len >= 0)
+		{
+			if (!(len--))
+				break;
+		}
+		else
+		{
+			if (!ch)
+				break;
+		}
 	}
-    }
-  while ((not_retval = gunzip_file.fs->read(&gunzip_file, 1, &ch)) == 1);
+	while ((not_retval = gunzip_file.fs->read(&gunzip_file, 1, &ch)) == 1);
 
-  return (!not_retval);
+	return (!not_retval);
 }
 
 
 /* Big-Endian defines for the 2-byte magic number for gzip files */
-#define GZIP_HDR_BE      0x1F8B
-#define OLD_GZIP_HDR_BE  0x1F9E
+#define GZIP_HDR_BE		0x1F8B
+#define OLD_GZIP_HDR_BE	0x1F9E
 
 /* Compression methods (see algorithm.doc) */
-#define STORED      0
-#define COMPRESSED  1
-#define PACKED      2
-#define LZHED       3
+#define STORED		0
+#define COMPRESSED	1
+#define PACKED		2
+#define LZHED		3
 /* methods 4 to 7 reserved */
-#define DEFLATED    8
-#define MAX_METHODS 9
+#define DEFLATED	8
+#define MAX_METHODS	9
 
 /* gzip flag byte */
-#define ASCII_FLAG   0x01	/* bit 0 set: file probably ascii text */
+#define ASCII_FLAG	 0x01	/* bit 0 set: file probably ascii text */
 #define CONTINUATION 0x02	/* bit 1 set: continuation of multi-part gzip file */
-#define EXTRA_FIELD  0x04	/* bit 2 set: extra field present */
-#define ORIG_NAME    0x08	/* bit 3 set: original file name present */
-#define COMMENT      0x10	/* bit 4 set: file comment present */
-#define ENCRYPTED    0x20	/* bit 5 set: file is encrypted */
-#define RESERVED     0xC0	/* bit 6,7:   reserved */
+#define EXTRA_FIELD	 0x04	/* bit 2 set: extra field present */
+#define ORIG_NAME	 0x08	/* bit 3 set: original file name present */
+#define COMMENT		 0x10	/* bit 4 set: file comment present */
+#define ENCRYPTED	 0x20	/* bit 5 set: file is encrypted */
+#define RESERVED	 0xC0	/* bit 6,7:   reserved */
 
 #define UNSUPP_FLAGS (CONTINUATION|ENCRYPTED|RESERVED)
 
 /* inflate block codes */
-#define INFLATE_STORED    0
-#define INFLATE_FIXED     1
-#define INFLATE_DYNAMIC   2
+#define INFLATE_STORED	0
+#define INFLATE_FIXED	1
+#define INFLATE_DYNAMIC	2
 
 typedef unsigned char uch;
 typedef unsigned short ush;
@@ -259,75 +262,75 @@
 int
 gunzip_test_header (void)
 {
-  unsigned char buf[10];
-  
-  compressed_file = 0;
-
-  /*
-   *  This checks if the file is gzipped.  If a problem occurs here
-   *  (other than a real error with the disk) then we don't think it
-   *  is a compressed file, and simply mark it as such.
-   */
-  if ( gunzip_file.fs->read(&gunzip_file, 10, &buf) != 10
-      || ((*((unsigned short *) buf) != GZIP_HDR_BE)
-	  && (*((unsigned short *) buf) != OLD_GZIP_HDR_BE)))
-    {
-      gunzip_file.fs->seek(&gunzip_file, 0);	    
-      return 1;
-    }
-
-  /*
-   *  This does consistency checking on the header data.  If a
-   *  problem occurs from here on, then we have corrupt or otherwise
-   *  bad data, and the error should be reported to the user.
-   */
-  if (buf[2] != DEFLATED
-      || (buf[3] & UNSUPP_FLAGS)
-      || ((buf[3] & EXTRA_FIELD)
-	  && (gunzip_file.fs->read(&gunzip_file, 2, &buf) != 2
-	      || bad_field (*((unsigned short *) buf))))
-      || ((buf[3] & ORIG_NAME) && bad_field (-1))
-      || ((buf[3] & COMMENT) && bad_field (-1)))
-    {
-      gunzip_file.fs->seek(&gunzip_file, 0);
-      return 10;
-    }
-
-  gzip_data_offset = gunzip_file.pos;
-
-  if (!initialized_gzmalloc)
-  {
-	  void* gzmalloc_base = NULL;
-	  
-          gzmalloc_base = prom_claim((void *)GZMALLOCADDR, GZMALLOCSIZE, 0);
-          if (gzmalloc_base == (void *)-1) {
-              prom_printf("Can't claim malloc buffer (%d bytes at 0x%08x)\n",
-                           GZMALLOCSIZE, GZMALLOCADDR);
-	      return -1;
-          }
-    	  gzmalloc_init(gzmalloc_base, GZMALLOCSIZE);
-	  initialized_gzmalloc = 1;
-  }
-  
-  initialize_tables ();
-
-  compressed_file = 1;
-  
-  gzip_filepos = 0;
+	unsigned char buf[10];
+
+	compressed_file = 0;
+
+	/*
+	 *  This checks if the file is gzipped.  If a problem occurs here
+	 *  (other than a real error with the disk) then we don't think it
+	 *  is a compressed file, and simply mark it as such.
+	 */
+	if ( gunzip_file.fs->read(&gunzip_file, 10, &buf) != 10
+			|| ((*((unsigned short *) buf) != GZIP_HDR_BE)
+			&& (*((unsigned short *) buf) != OLD_GZIP_HDR_BE)))
+	{
+		gunzip_file.fs->seek(&gunzip_file, 0);
+		return 1;
+	}
 
-  return 0;
+	/*
+	 *  This does consistency checking on the header data.  If a
+	 *  problem occurs from here on, then we have corrupt or otherwise
+	 *  bad data, and the error should be reported to the user.
+	 */
+	if (buf[2] != DEFLATED
+			|| (buf[3] & UNSUPP_FLAGS)
+			|| ((buf[3] & EXTRA_FIELD)
+			&& (gunzip_file.fs->read(&gunzip_file, 2, &buf) != 2
+			|| bad_field (*((unsigned short *) buf))))
+			|| ((buf[3] & ORIG_NAME) && bad_field (-1))
+			|| ((buf[3] & COMMENT) && bad_field (-1)))
+	{
+		gunzip_file.fs->seek(&gunzip_file, 0);
+		return 10;
+	}
+
+	gzip_data_offset = gunzip_file.pos;
+
+	if (!initialized_gzmalloc)
+	{
+		void* gzmalloc_base = NULL;
+	
+		gzmalloc_base = prom_claim((void *)GZMALLOCADDR, GZMALLOCSIZE, 0);
+		if (gzmalloc_base == (void *)-1) {
+			prom_printf("Can't claim malloc buffer (%d bytes at 0x%08x)\n",
+				GZMALLOCSIZE, GZMALLOCADDR);
+			return -1;
+		}
+		gzmalloc_init(gzmalloc_base, GZMALLOCSIZE);
+		initialized_gzmalloc = 1;
+	}
+
+	initialize_tables ();
+
+	compressed_file = 1;
+
+	gzip_filepos = 0;
+
+	return 0;
 }
 
 
 
 /* The inflate algorithm uses a sliding 32K byte window on the uncompressed
-   stream to find repeated byte strings.  This is implemented here as a
-   circular buffer.  The index is updated simply by incrementing and then
-   and'ing with 0x7fff (32K-1). */
+ stream to find repeated byte strings.  This is implemented here as a
+ circular buffer.  The index is updated simply by incrementing and then
+ and'ing with 0x7fff (32K-1). */
 /* It is left to other modules to supply the 32K area.  It is assumed
-   to be usable as if it were declared "uch slide[32768];" or as just
-   "uch *slide;" and then malloc'ed in the latter case.  The definition
-   must be in unzip.h, included above. */
+ to be usable as if it were declared "uch slide[32768];" or as just
+ "uch *slide;" and then malloc'ed in the latter case.  The definition
+ must be in unzip.h, included above. */
 
 
 /* sliding window in uncompressed data */
@@ -339,60 +342,70 @@
 
 /* Tables for deflate from PKZIP's appnote.txt. */
 static unsigned bitorder[] =
-{				/* Order of the bit length code lengths */
-  16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15};
+{
+	/* Order of the bit length code lengths */
+	16, 17, 18, 0, 8, 7, 9, 6, 10, 5, 11, 4, 12, 3, 13, 2, 14, 1, 15
+};
 static ush cplens[] =
-{				/* Copy lengths for literal codes 257..285 */
-  3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
-  35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0};
-	/* note: see note #13 above about the 258 in this list. */
+{
+	/* Copy lengths for literal codes 257..285 */
+	3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 15, 17, 19, 23, 27, 31,
+	35, 43, 51, 59, 67, 83, 99, 115, 131, 163, 195, 227, 258, 0, 0
+};
+/* note: see note #13 above about the 258 in this list. */
 static ush cplext[] =
-{				/* Extra bits for literal codes 257..285 */
-  0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
-  3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99};	/* 99==invalid */
+{
+	/* Extra bits for literal codes 257..285 */
+	0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 2, 2, 2, 2,
+	3, 3, 3, 3, 4, 4, 4, 4, 5, 5, 5, 5, 0, 99, 99
+};	/* 99==invalid */
 static ush cpdist[] =
-{				/* Copy offsets for distance codes 0..29 */
-  1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
-  257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
-  8193, 12289, 16385, 24577};
+{
+	/* Copy offsets for distance codes 0..29 */
+	1, 2, 3, 4, 5, 7, 9, 13, 17, 25, 33, 49, 65, 97, 129, 193,
+	257, 385, 513, 769, 1025, 1537, 2049, 3073, 4097, 6145,
+	8193, 12289, 16385, 24577
+};
 static ush cpdext[] =
-{				/* Extra bits for distance codes */
-  0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
-  7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
-  12, 12, 13, 13};
+{
+	/* Extra bits for distance codes */
+	0, 0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 5, 5, 6, 6,
+	7, 7, 8, 8, 9, 9, 10, 10, 11, 11,
+	12, 12, 13, 13
+};
 
 
 /*
-   Huffman code decoding is performed using a multi-level table lookup.
-   The fastest way to decode is to simply build a lookup table whose
-   size is determined by the longest code.  However, the time it takes
-   to build this table can also be a factor if the data being decoded
-   is not very long.  The most common codes are necessarily the
-   shortest codes, so those codes dominate the decoding time, and hence
-   the speed.  The idea is you can have a shorter table that decodes the
-   shorter, more probable codes, and then point to subsidiary tables for
-   the longer codes.  The time it costs to decode the longer codes is
-   then traded against the time it takes to make longer tables.
-
-   This results of this trade are in the variables lbits and dbits
-   below.  lbits is the number of bits the first level table for literal/
-   length codes can decode in one step, and dbits is the same thing for
-   the distance codes.  Subsequent tables are also less than or equal to
-   those sizes.  These values may be adjusted either when all of the
-   codes are shorter than that, in which case the longest code length in
-   bits is used, or when the shortest code is *longer* than the requested
-   table size, in which case the length of the shortest code in bits is
-   used.
-
-   There are two different values for the two tables, since they code a
-   different number of possibilities each.  The literal/length table
-   codes 286 possible values, or in a flat code, a little over eight
-   bits.  The distance table codes 30 possible values, or a little less
-   than five bits, flat.  The optimum values for speed end up being
-   about one bit more than those, so lbits is 8+1 and dbits is 5+1.
-   The optimum values may differ though from machine to machine, and
-   possibly even between compilers.  Your mileage may vary.
- */
+ Huffman code decoding is performed using a multi-level table lookup.
+ The fastest way to decode is to simply build a lookup table whose
+ size is determined by the longest code.  However, the time it takes
+ to build this table can also be a factor if the data being decoded
+ is not very long.  The most common codes are necessarily the
+ shortest codes, so those codes dominate the decoding time, and hence
+ the speed.  The idea is you can have a shorter table that decodes the
+ shorter, more probable codes, and then point to subsidiary tables for
+ the longer codes.  The time it costs to decode the longer codes is
+ then traded against the time it takes to make longer tables.
+
+ This results of this trade are in the variables lbits and dbits
+ below.  lbits is the number of bits the first level table for literal/
+ length codes can decode in one step, and dbits is the same thing for
+ the distance codes.  Subsequent tables are also less than or equal to
+ those sizes.  These values may be adjusted either when all of the
+ codes are shorter than that, in which case the longest code length in
+ bits is used, or when the shortest code is *longer* than the requested
+ table size, in which case the length of the shortest code in bits is
+ used.
+
+ There are two different values for the two tables, since they code a
+ different number of possibilities each.  The literal/length table
+ codes 286 possible values, or in a flat code, a little over eight
+ bits.  The distance table codes 30 possible values, or a little less
+ than five bits, flat.  The optimum values for speed end up being
+ about one bit more than those, so lbits is 8+1 and dbits is 5+1.
+ The optimum values may differ though from machine to machine, and
+ possibly even between compilers.  Your mileage may vary.
+*/
 
 
 static int lbits = 9;		/* bits in base literal/length lookup table */
@@ -404,46 +417,47 @@
 #define N_MAX 288		/* maximum number of codes in any set */
 
 /* Macros for inflate() bit peeking and grabbing.
-   The usage is:
+ The usage is:
 
-        NEEDBITS(j)
-        x = b & mask_bits[j];
-        DUMPBITS(j)
-
-   where NEEDBITS makes sure that b has at least j bits in it, and
-   DUMPBITS removes the bits from b.  The macros use the variable k
-   for the number of bits in b.  Normally, b and k are register
-   variables for speed, and are initialized at the beginning of a
-   routine that uses these macros from a global bit buffer and count.
-
-   If we assume that EOB will be the longest code, then we will never
-   ask for bits with NEEDBITS that are beyond the end of the stream.
-   So, NEEDBITS should not read any more bytes than are needed to
-   meet the request.  Then no bytes need to be "returned" to the buffer
-   at the end of the last block.
-
-   However, this assumption is not true for fixed blocks--the EOB code
-   is 7 bits, but the other literal/length codes can be 8 or 9 bits.
-   (The EOB code is shorter than other codes because fixed blocks are
-   generally short.  So, while a block always has an EOB, many other
-   literal/length codes have a significantly lower probability of
-   showing up at all.)  However, by making the first table have a
-   lookup of seven bits, the EOB code will be found in that first
-   lookup, and so will not require that too many bits be pulled from
-   the stream.
- */
+	NEEDBITS(j)
+	x = b & mask_bits[j];
+	DUMPBITS(j)
+
+ where NEEDBITS makes sure that b has at least j bits in it, and
+ DUMPBITS removes the bits from b.  The macros use the variable k
+ for the number of bits in b.  Normally, b and k are register
+ variables for speed, and are initialized at the beginning of a
+ routine that uses these macros from a global bit buffer and count.
+ 
+ If we assume that EOB will be the longest code, then we will never
+ ask for bits with NEEDBITS that are beyond the end of the stream.
+ So, NEEDBITS should not read any more bytes than are needed to
+ meet the request.  Then no bytes need to be "returned" to the buffer
+ at the end of the last block.
+
+ However, this assumption is not true for fixed blocks--the EOB code
+ is 7 bits, but the other literal/length codes can be 8 or 9 bits.
+ (The EOB code is shorter than other codes because fixed blocks are
+ generally short.  So, while a block always has an EOB, many other
+ literal/length codes have a significantly lower probability of
+ showing up at all.)  However, by making the first table have a
+ lookup of seven bits, the EOB code will be found in that first
+ lookup, and so will not require that too many bits be pulled from
+ the stream.
+*/
 
 static ulg bb;			/* bit buffer */
 static unsigned bk;		/* bits in bit buffer */
 
 static ush mask_bits[] =
 {
-  0x0000,
-  0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
-  0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
+	0x0000,
+	0x0001, 0x0003, 0x0007, 0x000f, 0x001f, 0x003f, 0x007f, 0x00ff,
+	0x01ff, 0x03ff, 0x07ff, 0x0fff, 0x1fff, 0x3fff, 0x7fff, 0xffff
 };
 
-#define NEEDBITS(n) { while( k<(n) )  { b |= ( (ulg)get_byte() ) << k;	k += 8;	} }
+#define NEEDBITS(n) { while( k<(n) )  { \
+					b |= ( (ulg)get_byte() ) << k;	k += 8;	} }
 #define DUMPBITS(n) { b >>= (n);  k -= (n);  }
 
 #define INBUFSIZ  0x2000
@@ -454,33 +468,33 @@
 static int
 get_byte (void)
 {
-  if (gunzip_file.pos == gzip_data_offset || bufloc == INBUFSIZ)
-    {
-      bufloc = 0;
-      gunzip_file.fs->read(&gunzip_file, INBUFSIZ, &inbuf);
-    }
+	if (gunzip_file.pos == gzip_data_offset || bufloc == INBUFSIZ)
+	{
+		bufloc = 0;
+		gunzip_file.fs->read(&gunzip_file, INBUFSIZ, &inbuf);
+	}
 
-  return inbuf[bufloc++];
+	return inbuf[bufloc++];
 }
 
 
 /* Huffman code lookup table entry--this entry is four bytes for machines
-   that have 16-bit pointers (e.g. PC's in the small or medium model).
-   Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
-   means that v is a literal, 16 < e < 32 means that v is a pointer to
-   the next table, which codes e - 16 bits, and lastly e == 99 indicates
-   an unused code.  If a code with e == 99 is looked up, this implies an
-   error in the data. */
+ that have 16-bit pointers (e.g. PC's in the small or medium model).
+ Valid extra bits are 0..13.  e == 15 is EOB (end of block), e == 16
+ means that v is a literal, 16 < e < 32 means that v is a pointer to
+ the next table, which codes e - 16 bits, and lastly e == 99 indicates
+ an unused code.  If a code with e == 99 is looked up, this implies an
+ error in the data. */
 struct huft
 {
-  uch e;			/* number of extra bits or operation */
-  uch b;			/* number of bits in this code or subcode */
-  union
-    {
-      ush n;			/* literal, length base, or distance base */
-      struct huft *t;		/* pointer to next level of table */
-    }
-  v;
+	uch e;			/* number of extra bits or operation */
+	uch b;			/* number of bits in this code or subcode */
+	union
+	{
+		ush n;			/* literal, length base, or distance base */
+		struct huft *t;		/* pointer to next level of table */
+	}
+	v;
 };
 
 
@@ -493,340 +507,340 @@
 
 /* more function prototypes */
 static int huft_build (unsigned *, unsigned, unsigned, ush *, ush *,
-		       struct huft **, int *);
+						struct huft **, int *);
 static int inflate_codes_in_window (void);
 
 
 /* Given a list of code lengths and a maximum table size, make a set of
-   tables to decode that set of codes.  Return zero on success, one if
-   the given code set is incomplete (the tables are still built in this
-   case), two if the input is invalid (all zero length codes or an
-   oversubscribed set of lengths), and three if not enough memory. */
+tables to decode that set of codes.  Return zero on success, one if
+the given code set is incomplete (the tables are still built in this
+case), two if the input is invalid (all zero length codes or an
+oversubscribed set of lengths), and three if not enough memory. */
 
 static int
 huft_build (unsigned *b,	/* code lengths in bits (all assumed <= BMAX) */
-	    unsigned n,		/* number of codes (assumed <= N_MAX) */
-	    unsigned s,		/* number of simple-valued codes (0..s-1) */
-	    ush * d,		/* list of base values for non-simple codes */
-	    ush * e,		/* list of extra bits for non-simple codes */
-	    struct huft **t,	/* result: starting table */
-	    int *m)		/* maximum lookup bits, returns actual */
-{
-  unsigned a;			/* counter for codes of length k */
-  unsigned c[BMAX + 1];		/* bit length count table */
-  unsigned f;			/* i repeats in table every f entries */
-  int g;			/* maximum code length */
-  int h;			/* table level */
-  register unsigned i;		/* counter, current code */
-  register unsigned j;		/* counter */
-  register int k;		/* number of bits in current code */
-  int l;			/* bits per table (returned in m) */
-  register unsigned *p;		/* pointer into c[], b[], or v[] */
-  register struct huft *q;	/* points to current table */
-  struct huft r;		/* table entry for structure assignment */
-  struct huft *u[BMAX];		/* table stack */
-  unsigned v[N_MAX];		/* values in order of bit length */
-  register int w;		/* bits before this table == (l * h) */
-  unsigned x[BMAX + 1];		/* bit offsets, then code stack */
-  unsigned *xp;			/* pointer into x */
-  int y;			/* number of dummy codes added */
-  unsigned z;			/* number of entries in current table */
-
-  /* Generate counts for each bit length */
-  memset ((char *) c, 0, sizeof (c));
-  p = b;
-  i = n;
-  do
-    {
-      c[*p]++;			/* assume all entries <= BMAX */
-      p++;			/* Can't combine with above line (Solaris bug) */
-    }
-  while (--i);
-  if (c[0] == n)		/* null input--all zero length codes */
-    {
-      *t = (struct huft *) NULL;
-      *m = 0;
-      return 0;
-    }
-
-  /* Find minimum and maximum length, bound *m by those */
-  l = *m;
-  for (j = 1; j <= BMAX; j++)
-    if (c[j])
-      break;
-  k = j;			/* minimum code length */
-  if ((unsigned) l < j)
-    l = j;
-  for (i = BMAX; i; i--)
-    if (c[i])
-      break;
-  g = i;			/* maximum code length */
-  if ((unsigned) l > i)
-    l = i;
-  *m = l;
-
-  /* Adjust last length count to fill out codes, if needed */
-  for (y = 1 << j; j < i; j++, y <<= 1)
-    if ((y -= c[j]) < 0)
-      return 2;			/* bad input: more codes than bits */
-  if ((y -= c[i]) < 0)
-    return 2;
-  c[i] += y;
-
-  /* Generate starting offsets into the value table for each length */
-  x[1] = j = 0;
-  p = c + 1;
-  xp = x + 2;
-  while (--i)
-    {				/* note that i == g from above */
-      *xp++ = (j += *p++);
-    }
-
-  /* Make a table of values in order of bit lengths */
-  p = b;
-  i = 0;
-  do
-    {
-      if ((j = *p++) != 0)
-	v[x[j]++] = i;
-    }
-  while (++i < n);
-
-  /* Generate the Huffman codes and for each, make the table entries */
-  x[0] = i = 0;			/* first Huffman code is zero */
-  p = v;			/* grab values in bit order */
-  h = -1;			/* no tables yet--level -1 */
-  w = -l;			/* bits decoded == (l * h) */
-  u[0] = (struct huft *) NULL;	/* just to keep compilers happy */
-  q = (struct huft *) NULL;	/* ditto */
-  z = 0;			/* ditto */
-
-  /* go through the bit lengths (k already is bits in shortest code) */
-  for (; k <= g; k++)
-    {
-      a = c[k];
-      while (a--)
-	{
-	  /* here i is the Huffman code of length k bits for value *p */
-	  /* make tables up to required level */
-	  while (k > w + l)
-	    {
-	      h++;
-	      w += l;		/* previous table always l bits */
-
-	      /* compute minimum size table less than or equal to l bits */
-	      z = (z = g - w) > (unsigned) l ? l : z;	/* upper limit on table size */
-	      if ((f = 1 << (j = k - w)) > a + 1)	/* try a k-w bit table */
-		{		/* too few codes for k-w bit table */
-		  f -= a + 1;	/* deduct codes from patterns left */
-		  xp = c + k;
-		  while (++j < z)	/* try smaller tables up to z bits */
-		    {
-		      if ((f <<= 1) <= *++xp)
-			break;	/* enough codes to use up j bits */
-		      f -= *xp;	/* else deduct codes from patterns */
-		    }
-		}
-	      z = 1 << j;	/* table entries for j-bit table */
+		unsigned n,		/* number of codes (assumed <= N_MAX) */
+		unsigned s,		/* number of simple-valued codes (0..s-1) */
+		ush * d,		/* list of base values for non-simple codes */
+		ush * e,		/* list of extra bits for non-simple codes */
+		struct huft **t,	/* result: starting table */
+		int *m)		/* maximum lookup bits, returns actual */
+{
+	unsigned a;			/* counter for codes of length k */
+	unsigned c[BMAX + 1];		/* bit length count table */
+	unsigned f;			/* i repeats in table every f entries */
+	int g;			/* maximum code length */
+	int h;			/* table level */
+	register unsigned i;		/* counter, current code */
+	register unsigned j;		/* counter */
+	register int k;		/* number of bits in current code */
+	int l;			/* bits per table (returned in m) */
+	register unsigned *p;		/* pointer into c[], b[], or v[] */
+	register struct huft *q;	/* points to current table */
+	struct huft r;		/* table entry for structure assignment */
+	struct huft *u[BMAX];		/* table stack */
+	unsigned v[N_MAX];		/* values in order of bit length */
+	register int w;		/* bits before this table == (l * h) */
+	unsigned x[BMAX + 1];		/* bit offsets, then code stack */
+	unsigned *xp;			/* pointer into x */
+	int y;			/* number of dummy codes added */
+	unsigned z;			/* number of entries in current table */
+
+	/* Generate counts for each bit length */
+	memset ((char *) c, 0, sizeof (c));
+	p = b;
+	i = n;
+	do
+	{
+		c[*p]++;			/* assume all entries <= BMAX */
+		p++;			/* Can't combine with above line (Solaris bug) */
+	}
+	while (--i);
+	if (c[0] == n)		/* null input--all zero length codes */
+	{
+		*t = (struct huft *) NULL;
+		*m = 0;
+		return 0;
+	}
 
-	      /* allocate and link in new table */
-              if ((q = (struct huft *)gzmalloc( (z + 1)*sizeof(struct huft) )) ==
-                       (struct huft *)NULL)
-              {
-		 prom_printf("\ngunzip: malloc failed; not enought memory ?\n");
-                 return 3;             /* not enough memory */
-              }
-
-	      *t = q + 1;	/* link to list for huft_free() */
-	      *(t = &(q->v.t)) = (struct huft *) NULL;
-	      u[h] = ++q;	/* table starts after link */
+	/* Find minimum and maximum length, bound *m by those */
+	l = *m;
+	for (j = 1; j <= BMAX; j++)
+		if (c[j])
+			break;
+	k = j;			/* minimum code length */
+	if ((unsigned) l < j)
+		l = j;
+	for (i = BMAX; i; i--)
+		if (c[i])
+			break;
+	g = i;			/* maximum code length */
+	if ((unsigned) l > i)
+		l = i;
+	*m = l;
+
+	/* Adjust last length count to fill out codes, if needed */
+	for (y = 1 << j; j < i; j++, y <<= 1)
+		if ((y -= c[j]) < 0)
+			return 2;			/* bad input: more codes than bits */
+	if ((y -= c[i]) < 0)
+		return 2;
+	c[i] += y;
+
+	/* Generate starting offsets into the value table for each length */
+	x[1] = j = 0;
+	p = c + 1;
+	xp = x + 2;
+	while (--i)
+	{				/* note that i == g from above */
+		*xp++ = (j += *p++);
+	}
 
-	      /* connect to last table, if there is one */
-	      if (h)
+	/* Make a table of values in order of bit lengths */
+	p = b;
+	i = 0;
+	do
+	{
+		if ((j = *p++) != 0)
+			v[x[j]++] = i;
+	}
+	while (++i < n);
+
+	/* Generate the Huffman codes and for each, make the table entries */
+	x[0] = i = 0;			/* first Huffman code is zero */
+	p = v;			/* grab values in bit order */
+	h = -1;			/* no tables yet--level -1 */
+	w = -l;			/* bits decoded == (l * h) */
+	u[0] = (struct huft *) NULL;	/* just to keep compilers happy */
+	q = (struct huft *) NULL;	/* ditto */
+	z = 0;			/* ditto */
+
+	/* go through the bit lengths (k already is bits in shortest code) */
+	for (; k <= g; k++)
+	{
+		a = c[k];
+		while (a--)
 		{
-		  x[h] = i;	/* save pattern for backing up */
-		  r.b = (uch) l;	/* bits to dump before this table */
-		  r.e = (uch) (16 + j);		/* bits in this table */
-		  r.v.t = q;	/* pointer to this table */
-		  j = i >> (w - l);	/* (get around Turbo C bug) */
-		  u[h - 1][j] = r;	/* connect to last table */
+			/* here i is the Huffman code of length k bits for value *p */
+			/* make tables up to required level */
+			while (k > w + l)
+			{
+				h++;
+				w += l;		/* previous table always l bits */
+
+				/* compute minimum size table less than or equal to l bits */
+				z = (z = g - w) > (unsigned) l ? l : z;	/* upper limit on table size */
+				if ((f = 1 << (j = k - w)) > a + 1)	/* try a k-w bit table */
+				{		/* too few codes for k-w bit table */
+					f -= a + 1;	/* deduct codes from patterns left */
+					xp = c + k;
+					while (++j < z)	/* try smaller tables up to z bits */
+					{
+						if ((f <<= 1) <= *++xp)
+							break;	/* enough codes to use up j bits */
+						f -= *xp;	/* else deduct codes from patterns */
+					}
+				}
+				z = 1 << j;	/* table entries for j-bit table */
+
+				/* allocate and link in new table */
+				if ((q = (struct huft *)gzmalloc( (z + 1)*sizeof(struct huft) )) ==
+								 (struct huft *)NULL)
+				{
+					prom_printf("\ngunzip: malloc failed; not enought memory ?\n");
+					return 3;	/* not enough memory */
+				}
+
+			*t = q + 1;	/* link to list for huft_free() */
+			*(t = &(q->v.t)) = (struct huft *) NULL;
+			u[h] = ++q;	/* table starts after link */
+
+			/* connect to last table, if there is one */
+			if (h)
+			{
+				x[h] = i;	/* save pattern for backing up */
+				r.b = (uch) l;	/* bits to dump before this table */
+				r.e = (uch) (16 + j);		/* bits in this table */
+				r.v.t = q;	/* pointer to this table */
+				j = i >> (w - l);	/* (get around Turbo C bug) */
+				u[h - 1][j] = r;	/* connect to last table */
+			}
+			}
+
+			/* set up table entry in r */
+			r.b = (uch) (k - w);
+			if (p >= v + n)
+				r.e = 99;		/* out of values--invalid code */
+			else if (*p < s)
+			{
+				r.e = (uch) (*p < 256 ? 16 : 15);		/* 256 is end-of-block code */
+				r.v.n = (ush) (*p);	/* simple code is just the value */
+				p++;		/* one compiler does not like *p++ */
+			}
+			else
+			{
+				r.e = (uch) e[*p - s];	/* non-simple--look up in lists */
+				r.v.n = d[*p++ - s];
+			}
+
+			/* fill code-like entries with r */
+			f = 1 << (k - w);
+			for (j = i >> w; j < z; j += f)
+				q[j] = r;
+
+			/* backwards increment the k-bit code i */
+			for (j = 1 << (k - 1); i & j; j >>= 1)
+				i ^= j;
+			i ^= j;
+
+			/* backup over finished tables */
+			while ((i & ((1 << w) - 1)) != x[h])
+			{
+				h--;		/* don't need to update q */
+				w -= l;
+			}
 		}
-	    }
-
-	  /* set up table entry in r */
-	  r.b = (uch) (k - w);
-	  if (p >= v + n)
-	    r.e = 99;		/* out of values--invalid code */
-	  else if (*p < s)
-	    {
-	      r.e = (uch) (*p < 256 ? 16 : 15);		/* 256 is end-of-block code */
-	      r.v.n = (ush) (*p);	/* simple code is just the value */
-	      p++;		/* one compiler does not like *p++ */
-	    }
-	  else
-	    {
-	      r.e = (uch) e[*p - s];	/* non-simple--look up in lists */
-	      r.v.n = d[*p++ - s];
-	    }
-
-	  /* fill code-like entries with r */
-	  f = 1 << (k - w);
-	  for (j = i >> w; j < z; j += f)
-	    q[j] = r;
-
-	  /* backwards increment the k-bit code i */
-	  for (j = 1 << (k - 1); i & j; j >>= 1)
-	    i ^= j;
-	  i ^= j;
-
-	  /* backup over finished tables */
-	  while ((i & ((1 << w) - 1)) != x[h])
-	    {
-	      h--;		/* don't need to update q */
-	      w -= l;
-	    }
 	}
-    }
 
-  /* Return true (1) if we were given an incomplete table */
-  return y != 0 && g != 1;
+	/* Return true (1) if we were given an incomplete table */
+	return y != 0 && g != 1;
 }
 
 
 /*
- *  inflate (decompress) the codes in a deflated (compressed) block.
- *  Return an error code or zero if it all goes ok.
- */
+*  inflate (decompress) the codes in a deflated (compressed) block.
+*  Return an error code or zero if it all goes ok.
+*/
 
 static unsigned inflate_n, inflate_d;
 
 static int
 inflate_codes_in_window (void)
 {
-  register unsigned e;		/* table entry flag/number of extra bits */
-  unsigned n, d;		/* length and index for copy */
-  unsigned w;			/* current window position */
-  struct huft *t;		/* pointer to table entry */
-  unsigned ml, md;		/* masks for bl and bd bits */
-  register ulg b;		/* bit buffer */
-  register unsigned k;		/* number of bits in bit buffer */
-
-  /* make local copies of globals */
-  d = inflate_d;
-  n = inflate_n;
-  b = bb;			/* initialize bit buffer */
-  k = bk;
-  w = wp;			/* initialize window position */
-
-  /* inflate the coded data */
-  ml = mask_bits[bl];		/* precompute masks for speed */
-  md = mask_bits[bd];
-  for (;;)			/* do until end of block */
-    {
-      if (!code_state)
-	{
-	  NEEDBITS ((unsigned) bl);
-	  if ((e = (t = tl + ((unsigned) b & ml))->e) > 16)
-	    do
-	      {
-		if (e == 99)
-		  {
-      		    prom_printf("ERR_BAD_GZIP_DATA: inflate_codes_in_window 1\n");
-		    return 0;
-		  }
-		DUMPBITS (t->b);
-		e -= 16;
-		NEEDBITS (e);
-	      }
-	    while ((e = (t = t->v.t + ((unsigned) b & mask_bits[e]))->e) > 16);
-	  DUMPBITS (t->b);
-
-	  if (e == 16)		/* then it's a literal */
-	    {
-	      slide[w++] = (uch) t->v.n;
-	      if (w == WSIZE)
-		break;
-	    }
-	  else
-	    /* it's an EOB or a length */
-	    {
-	      /* exit if end of block */
-	      if (e == 15)
+	register unsigned e;		/* table entry flag/number of extra bits */
+	unsigned n, d;		/* length and index for copy */
+	unsigned w;			/* current window position */
+	struct huft *t;		/* pointer to table entry */
+	unsigned ml, md;		/* masks for bl and bd bits */
+	register ulg b;		/* bit buffer */
+	register unsigned k;		/* number of bits in bit buffer */
+
+	/* make local copies of globals */
+	d = inflate_d;
+	n = inflate_n;
+	b = bb;			/* initialize bit buffer */
+	k = bk;
+	w = wp;			/* initialize window position */
+
+	/* inflate the coded data */
+	ml = mask_bits[bl];		/* precompute masks for speed */
+	md = mask_bits[bd];
+	for (;;)			/* do until end of block */
+	{
+		if (!code_state)
 		{
-		  block_len = 0;
-		  break;
+			NEEDBITS ((unsigned) bl);
+			if ((e = (t = tl + ((unsigned) b & ml))->e) > 16)
+				do
+			{
+				if (e == 99)
+				{
+					prom_printf("ERR_BAD_GZIP_DATA: inflate_codes_in_window 1\n");
+					return 0;
+				}
+				DUMPBITS (t->b);
+				e -= 16;
+				NEEDBITS (e);
+			}
+			while ((e = (t = t->v.t + ((unsigned) b & mask_bits[e]))->e) > 16);
+			DUMPBITS (t->b);
+
+			if (e == 16)		/* then it's a literal */
+			{
+				slide[w++] = (uch) t->v.n;
+				if (w == WSIZE)
+					break;
+			}
+			else
+				/* it's an EOB or a length */
+			{
+				/* exit if end of block */
+				if (e == 15)
+				{
+					block_len = 0;
+					break;
+				}
+
+				/* get length of block to copy */
+				NEEDBITS (e);
+				n = t->v.n + ((unsigned) b & mask_bits[e]);
+				DUMPBITS (e);
+
+				/* decode distance of block to copy */
+				NEEDBITS ((unsigned) bd);
+				if ((e = (t = td + ((unsigned) b & md))->e) > 16)
+					do
+				{
+					if (e == 99)
+					{
+						prom_printf("ERR_BAD_GZIP_DATA: inflate_codes_in_window 2\n");
+						return 0;
+					}
+					DUMPBITS (t->b);
+					e -= 16;
+					NEEDBITS (e);
+				}
+				while ((e = (t = t->v.t + ((unsigned) b & mask_bits[e]))->e)
+								> 16);
+				DUMPBITS (t->b);
+				NEEDBITS (e);
+				d = w - t->v.n - ((unsigned) b & mask_bits[e]);
+				DUMPBITS (e);
+				code_state++;
+			}
 		}
 
-	      /* get length of block to copy */
-	      NEEDBITS (e);
-	      n = t->v.n + ((unsigned) b & mask_bits[e]);
-	      DUMPBITS (e);
-
-	      /* decode distance of block to copy */
-	      NEEDBITS ((unsigned) bd);
-	      if ((e = (t = td + ((unsigned) b & md))->e) > 16)
-		do
-		  {
-		    if (e == 99)
-		      {
-      		        prom_printf("ERR_BAD_GZIP_DATA: inflate_codes_in_window 2\n");
-			return 0;
-		      }
-		    DUMPBITS (t->b);
-		    e -= 16;
-		    NEEDBITS (e);
-		  }
-		while ((e = (t = t->v.t + ((unsigned) b & mask_bits[e]))->e)
-		       > 16);
-	      DUMPBITS (t->b);
-	      NEEDBITS (e);
-	      d = w - t->v.n - ((unsigned) b & mask_bits[e]);
-	      DUMPBITS (e);
-	      code_state++;
-	    }
-	}
-
-      if (code_state)
-	{
-	  /* do the copy */
-	  do
-	    {
-	      n -= (e = (e = WSIZE - ((d &= WSIZE - 1) > w ? d : w)) > n ? n
-		    : e);
-	      if (w - d >= e)
-		{
-		  memmove (slide + w, slide + d, e);
-		  w += e;
-		  d += e;
-		}
-	      else
-		/* purposefully use the overlap for extra copies here!! */
+		if (code_state)
 		{
-		  while (e--)
-		    slide[w++] = slide[d++];
+			/* do the copy */
+			do
+			{
+				n -= (e = (e = WSIZE - ((d &= WSIZE - 1) > w ? d : w)) > n ? n
+					: e);
+				if (w - d >= e)
+				{
+					memmove (slide + w, slide + d, e);
+					w += e;
+					d += e;
+				}
+				else
+					/* purposefully use the overlap for extra copies here!! */
+				{
+					while (e--)
+						slide[w++] = slide[d++];
+				}
+				if (w == WSIZE)
+					break;
+			}
+			while (n);
+
+			if (!n)
+				code_state--;
+
+			/* did we break from the loop too soon? */
+			if (w == WSIZE)
+				break;
 		}
-	      if (w == WSIZE)
-		break;
-	    }
-	  while (n);
-
-	  if (!n)
-	    code_state--;
-
-	  /* did we break from the loop too soon? */
-	  if (w == WSIZE)
-	    break;
-	}
-    }
-
-  /* restore the globals from the locals */
-  inflate_d = d;
-  inflate_n = n;
-  wp = w;			/* restore global window pointer */
-  bb = b;			/* restore global bit buffer */
-  bk = k;
+	}
+
+	/* restore the globals from the locals */
+	inflate_d = d;
+	inflate_n = n;
+	wp = w;			/* restore global window pointer */
+	bb = b;			/* restore global bit buffer */
+	bk = k;
 
-  return !block_len;
+	return !block_len;
 }
 
 
@@ -835,70 +849,70 @@
 static void
 init_stored_block (void)
 {
-  register ulg b;		/* bit buffer */
-  register unsigned k;		/* number of bits in bit buffer */
+	register ulg b;		/* bit buffer */
+	register unsigned k;		/* number of bits in bit buffer */
 
-  /* make local copies of globals */
-  b = bb;			/* initialize bit buffer */
-  k = bk;
-
-  /* go to byte boundary */
-  DUMPBITS (k & 7);
-
-  /* get the length and its complement */
-  NEEDBITS (16);
-  block_len = ((unsigned) b & 0xffff);
-  DUMPBITS (16);
-  NEEDBITS (16);
-  if (block_len != (unsigned) ((~b) & 0xffff))
-     prom_printf("ERR_BAD_GZIP_DATA: init_stored_block");
-  DUMPBITS (16);
-
-  /* restore global variables */
-  bb = b;
-  bk = k;
+	/* make local copies of globals */
+	b = bb;			/* initialize bit buffer */
+	k = bk;
+
+	/* go to byte boundary */
+	DUMPBITS (k & 7);
+
+	/* get the length and its complement */
+	NEEDBITS (16);
+	block_len = ((unsigned) b & 0xffff);
+	DUMPBITS (16);
+	NEEDBITS (16);
+	if (block_len != (unsigned) ((~b) & 0xffff))
+		prom_printf("ERR_BAD_GZIP_DATA: init_stored_block");
+	DUMPBITS (16);
+
+	/* restore global variables */
+	bb = b;
+	bk = k;
 }
 
 
 /* get header for an inflated type 1 (fixed Huffman codes) block.  We should
-   either replace this with a custom decoder, or at least precompute the
-   Huffman tables. */
+  either replace this with a custom decoder, or at least precompute the
+  Huffman tables. */
 
 static void
 init_fixed_block ()
 {
-  int i;			/* temporary variable */
-  unsigned l[288];		/* length list for huft_build */
+	int i;			/* temporary variable */
+	unsigned l[288];		/* length list for huft_build */
+
+	/* set up literal table */
+	for (i = 0; i < 144; i++)
+		l[i] = 8;
+	for (; i < 256; i++)
+		l[i] = 9;
+	for (; i < 280; i++)
+		l[i] = 7;
+	for (; i < 288; i++)		/* make a complete, but wrong code set */
+		l[i] = 8;
+	bl = 7;
+	if ((i = huft_build (l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
+	{
+		prom_printf("ERR_BAD_GZIP_DATA: init_fixed_block 1\n");
+		return;
+	}
 
-  /* set up literal table */
-  for (i = 0; i < 144; i++)
-    l[i] = 8;
-  for (; i < 256; i++)
-    l[i] = 9;
-  for (; i < 280; i++)
-    l[i] = 7;
-  for (; i < 288; i++)		/* make a complete, but wrong code set */
-    l[i] = 8;
-  bl = 7;
-  if ((i = huft_build (l, 288, 257, cplens, cplext, &tl, &bl)) != 0)
-    {
-      prom_printf("ERR_BAD_GZIP_DATA: init_fixed_block 1\n");
-      return;
-    }
-
-  /* set up distance table */
-  for (i = 0; i < 30; i++)	/* make an incomplete code set */
-    l[i] = 5;
-  bd = 5;
-  if ((i = huft_build (l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
-    {
-      prom_printf("ERR_BAD_GZIP_DATA: init_fixed_block 2\n");
-      return;
-    }
-
-  /* indicate we're now working on a block */
-  code_state = 0;
-  block_len++;
+	/* set up distance table */
+	for (i = 0; i < 30; i++)	/* make an incomplete code set */
+		l[i] = 5;
+	bd = 5;
+	if ((i = huft_build (l, 30, 0, cpdist, cpdext, &td, &bd)) > 1)
+	{
+		prom_printf("ERR_BAD_GZIP_DATA: init_fixed_block 2\n");
+		return;
+	}
+
+	/* indicate we're now working on a block */
+	code_state = 0;
+	block_len++;
 }
 
 
@@ -907,292 +921,292 @@
 static void
 init_dynamic_block (void)
 {
-  int i;			/* temporary variables */
-  unsigned j;
-  unsigned l;			/* last length */
-  unsigned m;			/* mask for bit lengths table */
-  unsigned n;			/* number of lengths to get */
-  unsigned nb;			/* number of bit length codes */
-  unsigned nl;			/* number of literal/length codes */
-  unsigned nd;			/* number of distance codes */
-  unsigned ll[286 + 30];	/* literal/length and distance code lengths */
-  register ulg b;		/* bit buffer */
-  register unsigned k;		/* number of bits in bit buffer */
-
-  /* make local bit buffer */
-  b = bb;
-  k = bk;
-
-  /* read in table lengths */
-  NEEDBITS (5);
-  nl = 257 + ((unsigned) b & 0x1f);	/* number of literal/length codes */
-  DUMPBITS (5);
-  NEEDBITS (5);
-  nd = 1 + ((unsigned) b & 0x1f);	/* number of distance codes */
-  DUMPBITS (5);
-  NEEDBITS (4);
-  nb = 4 + ((unsigned) b & 0xf);	/* number of bit length codes */
-  DUMPBITS (4);
-  if (nl > 286 || nd > 30)
-    {
-     prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 1\n");
-      return;
-    }
-
-  /* read in bit-length-code lengths */
-  for (j = 0; j < nb; j++)
-    {
-      NEEDBITS (3);
-      ll[bitorder[j]] = (unsigned) b & 7;
-      DUMPBITS (3);
-    }
-  for (; j < 19; j++)
-    ll[bitorder[j]] = 0;
-
-  /* build decoding table for trees--single level, 7 bit lookup */
-  bl = 7;
-  if ((i = huft_build (ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
-    {
-     prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 2\n");
-      return;
-    }
-
-  /* read in literal and distance code lengths */
-  n = nl + nd;
-  m = mask_bits[bl];
-  i = l = 0;
-  while ((unsigned) i < n)
-    {
-      NEEDBITS ((unsigned) bl);
-      j = (td = tl + ((unsigned) b & m))->b;
-      DUMPBITS (j);
-      j = td->v.n;
-      if (j < 16)		/* length of code in bits (0..15) */
-	ll[i++] = l = j;	/* save last length in l */
-      else if (j == 16)		/* repeat last length 3 to 6 times */
-	{
-	  NEEDBITS (2);
-	  j = 3 + ((unsigned) b & 3);
-	  DUMPBITS (2);
-	  if ((unsigned) i + j > n)
-	    {
-     prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 3\n");
-	      return;
-	    }
-	  while (j--)
-	    ll[i++] = l;
-	}
-      else if (j == 17)		/* 3 to 10 zero length codes */
-	{
-	  NEEDBITS (3);
-	  j = 3 + ((unsigned) b & 7);
-	  DUMPBITS (3);
-	  if ((unsigned) i + j > n)
-	    {
-     prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 4\n");
-	      return;
-	    }
-	  while (j--)
-	    ll[i++] = 0;
-	  l = 0;
-	}
-      else
-	/* j == 18: 11 to 138 zero length codes */
-	{
-	  NEEDBITS (7);
-	  j = 11 + ((unsigned) b & 0x7f);
-	  DUMPBITS (7);
-	  if ((unsigned) i + j > n)
-	    {
-              prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 5\n");
-	      return;
-	    }
-	  while (j--)
-	    ll[i++] = 0;
-	  l = 0;
-	}
-    }
-
-  /* free decoding table for trees */
-  reset_gzmalloc();
-
-  /* restore the global bit buffer */
-  bb = b;
-  bk = k;
-
-  /* build the decoding tables for literal/length and distance codes */
-  bl = lbits;
-  if ((i = huft_build (ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
-    {
-      prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 6\n");
-      return;
-    }
-  bd = dbits;
-  if ((i = huft_build (ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
-    {
-      prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 7\n");
-      return;
-    }
-
-  /* indicate we're now working on a block */
-  code_state = 0;
-  block_len++;
+	int i;			/* temporary variables */
+	unsigned j;
+	unsigned l;			/* last length */
+	unsigned m;			/* mask for bit lengths table */
+	unsigned n;			/* number of lengths to get */
+	unsigned nb;			/* number of bit length codes */
+	unsigned nl;			/* number of literal/length codes */
+	unsigned nd;			/* number of distance codes */
+	unsigned ll[286 + 30];	/* literal/length and distance code lengths */
+	register ulg b;		/* bit buffer */
+	register unsigned k;		/* number of bits in bit buffer */
+
+	/* make local bit buffer */
+	b = bb;
+	k = bk;
+
+	/* read in table lengths */
+	NEEDBITS (5);
+	nl = 257 + ((unsigned) b & 0x1f);	/* number of literal/length codes */
+	DUMPBITS (5);
+	NEEDBITS (5);
+	nd = 1 + ((unsigned) b & 0x1f);	/* number of distance codes */
+	DUMPBITS (5);
+	NEEDBITS (4);
+	nb = 4 + ((unsigned) b & 0xf);	/* number of bit length codes */
+	DUMPBITS (4);
+	if (nl > 286 || nd > 30)
+	{
+		prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 1\n");
+		return;
+	}
+
+	/* read in bit-length-code lengths */
+	for (j = 0; j < nb; j++)
+	{
+		NEEDBITS (3);
+		ll[bitorder[j]] = (unsigned) b & 7;
+		DUMPBITS (3);
+	}
+	for (; j < 19; j++)
+		ll[bitorder[j]] = 0;
+
+	/* build decoding table for trees--single level, 7 bit lookup */
+	bl = 7;
+	if ((i = huft_build (ll, 19, 19, NULL, NULL, &tl, &bl)) != 0)
+	{
+		prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 2\n");
+		return;
+	}
+
+	/* read in literal and distance code lengths */
+	n = nl + nd;
+	m = mask_bits[bl];
+	i = l = 0;
+	while ((unsigned) i < n)
+	{
+		NEEDBITS ((unsigned) bl);
+		j = (td = tl + ((unsigned) b & m))->b;
+		DUMPBITS (j);
+		j = td->v.n;
+		if (j < 16)		/* length of code in bits (0..15) */
+			ll[i++] = l = j;	/* save last length in l */
+		else if (j == 16)		/* repeat last length 3 to 6 times */
+		{
+			NEEDBITS (2);
+			j = 3 + ((unsigned) b & 3);
+			DUMPBITS (2);
+			if ((unsigned) i + j > n)
+			{
+				prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 3\n");
+				return;
+			}
+			while (j--)
+				ll[i++] = l;
+		}
+		else if (j == 17)		/* 3 to 10 zero length codes */
+		{
+			NEEDBITS (3);
+			j = 3 + ((unsigned) b & 7);
+			DUMPBITS (3);
+			if ((unsigned) i + j > n)
+			{
+				prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 4\n");
+				return;
+			}
+			while (j--)
+				ll[i++] = 0;
+			l = 0;
+		}
+		else
+			/* j == 18: 11 to 138 zero length codes */
+		{
+			NEEDBITS (7);
+			j = 11 + ((unsigned) b & 0x7f);
+			DUMPBITS (7);
+			if ((unsigned) i + j > n)
+			{
+				prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 5\n");
+				return;
+			}
+			while (j--)
+				ll[i++] = 0;
+			l = 0;
+		}
+	}
+
+	/* free decoding table for trees */
+	reset_gzmalloc();
+
+	/* restore the global bit buffer */
+	bb = b;
+	bk = k;
+
+	/* build the decoding tables for literal/length and distance codes */
+	bl = lbits;
+	if ((i = huft_build (ll, nl, 257, cplens, cplext, &tl, &bl)) != 0)
+	{
+		prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 6\n");
+		return;
+	}
+	bd = dbits;
+	if ((i = huft_build (ll + nl, nd, 0, cpdist, cpdext, &td, &bd)) != 0)
+	{
+		prom_printf("ERR_BAD_GZIP_DATA: init_dynamic_block 7\n");
+		return;
+	}
+
+	/* indicate we're now working on a block */
+	code_state = 0;
+	block_len++;
 }
 
 
 static void
 get_new_block (void)
 {
-  register ulg b;		/* bit buffer */
-  register unsigned k;		/* number of bits in bit buffer */
+	register ulg b;		/* bit buffer */
+	register unsigned k;		/* number of bits in bit buffer */
 
-  /* make local bit buffer */
-  b = bb;
-  k = bk;
-
-  /* read in last block bit */
-  NEEDBITS (1);
-  last_block = (int) b & 1;
-  DUMPBITS (1);
-
-  /* read in block type */
-  NEEDBITS (2);
-  block_type = (unsigned) b & 3;
-  DUMPBITS (2);
-
-  /* restore the global bit buffer */
-  bb = b;
-  bk = k;
-
-  if (block_type == INFLATE_STORED)
-    init_stored_block ();
-  if (block_type == INFLATE_FIXED)
-    init_fixed_block ();
-  if (block_type == INFLATE_DYNAMIC)
-    init_dynamic_block ();
+	/* make local bit buffer */
+	b = bb;
+	k = bk;
+
+	/* read in last block bit */
+	NEEDBITS (1);
+	last_block = (int) b & 1;
+	DUMPBITS (1);
+
+	/* read in block type */
+	NEEDBITS (2);
+	block_type = (unsigned) b & 3;
+	DUMPBITS (2);
+
+	/* restore the global bit buffer */
+	bb = b;
+	bk = k;
+
+	if (block_type == INFLATE_STORED)
+		init_stored_block ();
+	if (block_type == INFLATE_FIXED)
+		init_fixed_block ();
+	if (block_type == INFLATE_DYNAMIC)
+		init_dynamic_block ();
 }
 
 
 static void
 inflate_window (void)
 {
-  /* initialize window */
-  wp = 0;
+	/* initialize window */
+	wp = 0;
 
-  /*
-   *  Main decompression loop.
-   */
+	/*
+	 *  Main decompression loop.
+	 */
 
-  while (wp < WSIZE)
-    {
-      if (!block_len)
+	while (wp < WSIZE)
 	{
-	  if (last_block)
-	    break;
+		if (!block_len)
+		{
+			if (last_block)
+				break;
 
-	  get_new_block ();
-	}
+			get_new_block ();
+		}
 
-      if (block_type > INFLATE_DYNAMIC) {
-              prom_printf("ERR_BAD_GZIP_DATA: init_window 1\n");
-	      return;
-	     }      
+		if (block_type > INFLATE_DYNAMIC) {
+			prom_printf("ERR_BAD_GZIP_DATA: init_window 1\n");
+			return;
+		}
 
-      /*
-       *  Expand stored block here.
-       */
-      if (block_type == INFLATE_STORED)
-	{
-	  int w = wp;
+		/*
+		 *  Expand stored block here.
+		 */
+		if (block_type == INFLATE_STORED)
+		{
+			int w = wp;
 
-	  /*
-	   *  This is basically a glorified pass-through
-	   */
+			/*
+			 *  This is basically a glorified pass-through
+			 */
 
-	  while (block_len && w < WSIZE)
-	    {
-	      slide[w++] = get_byte ();
-	      block_len--;
-	    }
+			while (block_len && w < WSIZE)
+			{
+				slide[w++] = get_byte ();
+				block_len--;
+			}
 
-	  wp = w;
+			wp = w;
 
-	  continue;
-	}
+			continue;
+		}
 
-      /*
-       *  Expand other kind of block.
-       */
+		/*
+		 *  Expand other kind of block.
+		 */
 
-       if ( inflate_codes_in_window() )
-	       reset_gzmalloc();
-    }
+		if ( inflate_codes_in_window() )
+			reset_gzmalloc();
+	}
 
-  saved_filepos += WSIZE;
+	saved_filepos += WSIZE;
 
-  /* XXX do CRC calculation here! */
+	/* XXX do CRC calculation here! */
 }
 
 
 static void
 initialize_tables (void)
 {
-  saved_filepos = 0;
-  
-  if (gunzip_file.fs->seek(&gunzip_file, gzip_data_offset) != FILE_ERR_OK )
-	  prom_printf("Error seeking !!!\n");
-	  
-
-  /* initialize window, bit buffer */
-  bk = 0;
-  bb = 0;
-
-  /* reset partial decompression code */
-  last_block = 0;
-  block_len = 0;
+	saved_filepos = 0;
+
+	if (gunzip_file.fs->seek(&gunzip_file, gzip_data_offset) != FILE_ERR_OK )
+		prom_printf("Error seeking !!!\n");
+	
+
+	/* initialize window, bit buffer */
+	bk = 0;
+	bb = 0;
+
+	/* reset partial decompression code */
+	last_block = 0;
+	block_len = 0;
 
-  /* reset memory allocation stuff */
-  reset_gzmalloc();
+	/* reset memory allocation stuff */
+	reset_gzmalloc();
 }
 
 
 int
 gunzip_read (void *buf, unsigned int len)
 {
-  int ret = 0;
+	int ret = 0;
 
-  /* do we reset decompression to the beginning of the file? */
-  if (saved_filepos > gzip_filepos + WSIZE)
-    initialize_tables ();
-
-  /*
-   *  This loop operates upon uncompressed data only.  The only
-   *  special thing it does is to make sure the decompression
-   *  window is within the range of data it needs.
-   */
-
-  while (len > 0)
-    {
-      register int size;
-      register char *srcaddr;
-
-      while (gzip_filepos >= saved_filepos)
-	inflate_window ();
-      
-      srcaddr = (char *) ((gzip_filepos & (WSIZE - 1)) + slide);
-      size = saved_filepos - gzip_filepos;
-      if (size > len)
-	size = len;
-
-      memmove (buf, srcaddr, size);
-
-      buf += size;
-      len -= size;
-      gzip_filepos += size;
-      ret += size;
-    }
+	/* do we reset decompression to the beginning of the file? */
+	if (saved_filepos > gzip_filepos + WSIZE)
+		initialize_tables ();
+
+	/*
+	 *  This loop operates upon uncompressed data only.  The only
+	 *  special thing it does is to make sure the decompression
+	 *  window is within the range of data it needs.
+	 */
 
-  return ret;
+	while (len > 0)
+	{
+		register int size;
+		register char *srcaddr;
+
+		while (gzip_filepos >= saved_filepos)
+			inflate_window ();
+
+		srcaddr = (char *) ((gzip_filepos & (WSIZE - 1)) + slide);
+		size = saved_filepos - gzip_filepos;
+		if (size > len)
+			size = len;
+
+		memmove (buf, srcaddr, size);
+
+		buf += size;
+		len -= size;
+		gzip_filepos += size;
+		ret += size;
+	}
+
+	return ret;
 }
 
 int
@@ -1202,3 +1216,6 @@
 	return FILE_ERR_OK;
 }
 
+/*
+ * vim: ts=4
+ */


More information about the pld-cvs-commit mailing list